

Mechanical Vibrations

```
m
```

```
Eng. Laith Batarseh
```


■ Newton's 2nd law of motion

$$\vec{F}(t) = \frac{d}{dt} \left(m \frac{d\vec{x}(t)}{dt} \right) = m \frac{d^2 \vec{x}(t)}{dt^2} = m \vec{x}$$

Energy conservation

Kinetic energy
$$T = \frac{1}{2}mx^{2}$$

Potential energy $U = \frac{1}{2}kx^2$

$$T + U = cons \tan t$$

$$\frac{d}{dt}(T+U) = 0$$

$$m x + kx = 0$$

$$A_1(t)\ddot{x}(t) + A_2(t)\dot{x}(t) + A_3(t)x(t) = F(t)$$

$$F(t) = 0 \rightarrow \text{Homogenous}$$

$$F(t) \neq 0 \rightarrow$$
 none homogenous

$$X(t) = \mathbf{C}_1 \mathbf{x}_1 + \mathbf{C}_2 \mathbf{x}_2$$

$$x(t) = C_1 x_1 + C_2 x_2 + x_p$$

If A_1 , A_2 and A_3 are constants: Characteristic equation: $A_1s^2+A_2s+A_3=0$

$$x_p$$
 form is the same type as $F(t)$

$$s = \frac{-A_2 \pm \sqrt{A_2^2 - 4A_1A_3}}{2A_1}$$

THE COLUMN THE PARTY OF THE PAR

□ Solution

• m x + kx = 0 is 2^{nd} order homogenous differential equation

where:
$$A_1 = m$$
, $A_2=0$ and $A_3=k$

$$s=rac{\pm\sqrt{-4mk}}{2m}=\pm i\sqrt{rac{k}{m}}=\pm i\omega_n^{ ext{ frequency}}$$

Natural

• the solution : $x(t) = e^{\alpha t} \{C_1 \cos(\beta t) + C_1 \sin(\beta t)\}$

where
$$\alpha = 0$$
 and $\beta = \omega_n$

•
$$x(t) = C_1 \cos(\omega_n t) + C_2 \sin(\omega_n t)$$

Solution

• C_1 and C_2 can be determined from initial conditions (I.Cs). For this case we need two I.Cs. $x(t=0)=C_1=x_o$

$$\dot{x}(t=0) = C_2 \omega_n = \dot{x}_o$$

The I.Cs for this case would be:

So:
$$x(t) = x_o \cos(\omega_n t) + \frac{x_o}{\omega} \sin(\omega_n t) - - Eq.1$$

B

Introduce Eq.2 into Eq.1: $x(t) = A \cos(\omega_n t - \phi) = A_o \sin(\omega_n t + \phi_o)$

Harmonic motion

$$x(t) = C_1 \cos(\omega_n t) + C_2 \sin(\omega_n t)$$

$$x(t) = x_o \cos(\omega_n t) + \frac{\dot{x}_o}{\omega_n} \sin(\omega_n t)$$

Harmonic functions in time.

Assume:

$$C_1 = A \cos(\phi) - Eq.2(a)$$

$$C_2 = A \sin(\phi) - Eq.2(b)$$

Mass spring system is called harmonic oscillator

$$A = \sqrt{C_1^2 + C_2^2} = \sqrt{x_o^2 + \left(\frac{\dot{x}_o}{a}\right)} = Amplitude$$

$$A_o = A$$

B

$$A = \sqrt{C_1^2 + C_2^2} = \sqrt{x_o^2 + \left(\frac{\dot{x}_o}{\omega_n}\right)^2} = Amplitude \qquad \phi = \tan^{-1}\left(\frac{C_2}{C_1}\right) = \tan^{-1}\left(\frac{\dot{x}_o}{x_o\omega_n}\right) = \text{Phase angle}$$

$$\phi_{\rm o} = \tan^{-1} \left(\frac{x_o \omega_n}{\frac{x_o}{x_o}} \right)$$

Harmonic motion

- (I) V
 - I B R A
- A T I O N
- N Ñ

- Natural Frequency (N.F)
- A system property (i.e. depends of system parameters m and k)
- Unit: rad/sec
- It is related to the periodic time (τ) : $\tau = 2\pi/\omega_n$
- Periodic time is the time taken to complete one cycle
 (i.e. 4 strokes)
- The relation between the ω_n and τ is inverse relation

□Example 2.1

The column of the water tank shown in Fig is 90m high and is made of reinforced concrete with a tubular cross section of inner diameter 2.4m and outer diameter 3m. The tank mass equal 3 x 10⁵ kg when filled with water. By neglecting the mass of the column and assuming the Young's modulus of reinforced concrete as 30 Gpa. determine the following:

- •the natural frequency and the natural time period of transverse vibration of the water tank
- •the vibration response of the water tank due to an initial transverse displacement of 0.3m.
- •the maximum values of the velocity and acceleration experienced by the tank.

Initial assumptions:

- the water tank is a point mass
- the column has a uniform cross section
- the mass of the column is negligible
- the initial velocity of the water tank equal zero

Example 2.1 solution:

a. Calculation of natural frequency:

1. Stiffness:
$$k = \frac{3EI}{I^3}$$
 But: $I = \frac{\pi}{64} \left(d_o^4 - d_i^4 \right) = \frac{\pi}{64} \left(3^4 - 2.4^4 \right) = 2.3475 \, m^4$

So:
$$k = \frac{3x30x10^9 x2.3475}{90^3} = 289,812 N/m$$

2. Natural frequency:
$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{289,812}{3x10^5}} = 0.9829 \text{ rad/s}$$

Example 2.1 solution:

b. Finding the response:

1.
$$x(t) = A \sin(\omega_n t + \phi)$$

$$A = \sqrt{x_o^2 + \left(\frac{\dot{x}_o}{x_o}\right)^2} = x_o = 0.3m \qquad \phi = \tan^{-1}\left(\frac{x_o\omega_n}{\dot{x}_o}\right) = \tan^{-1}\left(\frac{x_o\omega_n}{0}\right) = \frac{\pi}{2}$$

So,
$$x(t) = 0.3 \sin(0.9829t + 0.5\pi)$$

Example 2.1 solution:

c. Finding the max velocity:

$$\dot{x}(t) = 0.3(0.9829)\cos\left(0.9829t + \frac{\pi}{2}\right)$$
 $\dot{x}_{\text{max}} = 0.3(0.9829) = 0.2949m/s$

$$\dot{x}_{\text{max}} = 0.3(0.9829) = 0.2949 m/s$$

Finding the max acceleration:

$$\ddot{x}(t) = -0.3(0.9829)^2 \sin\left(0.9829t + \frac{\pi}{2}\right) \implies \ddot{x}_{\text{max}} = 0.3(0.9829)^2 = 0.2898m/s^2$$

Find the natural frequency of the pulley system shown in Fig. by neglecting the friction and the masses of the pulleys.

Solution:

1. Free body diagram

$$k_2 = 2k \quad P \uparrow \uparrow P$$

$$k_1 = 2k$$

2.
$$x = 2x_1 + 2x_2 - Eq.1$$

□Example2 : **Q2.13**

Solution:

- 3. Equilibrium for pulley_1 : $2P = k_1 x_1 = 2k x_1 \dots$ Eq.2
- 4. Equilibrium for pulley_2 : $2P = k_2 x_2 = 2k x_2 Eq.3$
- **5. Substitute Eqs 2 and 3 in Eq.1:** $x = 2\left(\frac{2P}{k_1}\right) + 2\left(\frac{2P}{k_2}\right) = 4P\left(\frac{1}{2k} + \frac{1}{2k}\right) = \frac{4P}{k}$
- **6.**Let k_{eq} is the equivalent spring constant for the system: $k_{eq} = \frac{P}{x} = \frac{k}{4}$
- 7. Mathematical model: m x + kx = 0
- **8. Natural frequency:** $\omega_n = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{k}{4m}}$

□Rotational system

Governing equation:

$$\sum M_O = J_O \alpha = J_O \ddot{\theta}$$

$$J_O \ddot{\theta} + mgl \sin(\theta) = 0$$

Assume θ is very small

$$\sin(\theta) \cong \theta$$

B

$$J_{O} \ddot{\theta} + (mgl)\theta = 0$$

Natural frequency (ω_n)

$$\omega_n = \sqrt{\frac{mgl}{J_O}} \Rightarrow \tau = 2\pi \sqrt{\frac{J_O}{mgl}}$$

□Torsional system

B

Governing equation:

$$\sum M_O = J_O \alpha = J_O \ddot{\theta}$$

$$J_{\Omega} \ddot{\theta} + k_{T}\theta = 0$$

Natural frequency (ω_n)

$$\omega_n = \sqrt{\frac{k_T}{J_O}} \Rightarrow \tau = 2\pi \sqrt{\frac{J_O}{k_T}}$$

$$J_{O} = \frac{\rho h \pi D^{4}}{32} = \frac{WD^{2}}{8g}$$

Solution

$$\theta(t) = A_1 \cos(\omega_n t) + A_2 \sin(\omega_n t)$$

$$\theta(t=0) = A_1 = \theta_0$$

$$\dot{\theta}(t=0) = A_2 \omega_n = \dot{\theta}_o$$

$$\theta(t) = \theta_o \cos(\omega_n t) + \frac{\theta_o}{\omega_n} \sin(\omega_n t)$$

□Example 2.3

Any rigid body pivoted at a point other than its center of mass will oscillate about the pivot point under its own gravitational force. Such a system is known as a compound pendulum (see the Fig). Find the natural frequency of such a system.

I B

n A T

□Solution

the governing equation is found as:

$$J_o \ddot{\theta} + Wd \sin(\theta) = 0$$

Assume small angle of vibration:

$$J_O \ddot{\theta} + (Wd)\theta = 0$$

So:

$$\omega_n = \sqrt{\frac{Wd}{J_O}} = \sqrt{\frac{mgd}{J_O}}$$

■Example 2.4: **Q2.12**

Find the natural frequency of the system shown in Fig. with the springs k1 and k2 in the end of the elastic beam.

□Example 2.4: Q2.12

Solution:

 \square k_{eq} is equivalent stiffness for the combination of k_1 , k_2 and k_{beam}

$$k_{beam} = \frac{3EI}{I^3}$$

 $\square k_1$ and k_2 equivalent: apply energy concept

$$\frac{1}{2}k_{eq,1,2}x^2 = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x_2^2 \Longrightarrow k_{eq} = k_1\left(\frac{x_1}{x}\right)^2 + k_2\left(\frac{x_2}{x}\right)^2$$

□Example 2.4: Q2.12

Solution:

Finding k_{ea}

$$\frac{1}{k_{eq}} = \frac{1}{k_{eq,1,2}} + \frac{1}{k_{beam}} \Longrightarrow k_{eq} = \frac{k_{eq,1,2} k_{beam}}{k_{eq,1,2} + k_{beam}}$$

Y I R

R A T

□Example 2.4: Q2.12

Solution:

□Finding natural frequency

$$\omega_n = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{k_{eq,1,2}k_{beam}}{m(k_{eq,1,2} + k_{beam})}}$$

$$\omega_{n} = \sqrt{\frac{\left(k_{1}\left(\frac{x_{1}}{x}\right)^{2} + k_{2}\left(\frac{x_{2}}{x}\right)^{2}\right)k_{beam}}{m\left(k_{1}\left(\frac{x_{1}}{x}\right)^{2} + k_{2}\left(\frac{x_{2}}{x}\right)^{2} + k_{beam}}\right)}}$$

x₁, x₂ and x canbe found fromstrength relation

Y I B

A T I

□Example 2.5: Q2.7

Three springs and a mass are attached to a rigid, weightless bar *PQ* as shown in Fig. Find the natural frequency of vibration of the system.

■Example 2.5: Q2.7

Solution:

Assume small angular motion $\sin(\theta) \cong \theta$

$$\frac{1}{2}k_{eq,1,2}(\theta l_3)^2 = \frac{1}{2}k_1(\theta l_1)^2 + \frac{1}{2}k_2(\theta l_2)^2 \Rightarrow k_{eq,1,2} = \frac{k_1l_1^2 + k_2l_2^2}{l_3^2}$$

Let k_{eq} is the equivalent stiffness for the whole system

$$\frac{1}{k_{eq}} = \frac{1}{k_{eq,1,2}} + \frac{1}{k_3} \Longrightarrow k_{eq} = \frac{k_{eq,1,2}k_3}{k_3 + k_{eq,1,2}}$$

OTTOMA COMP

I B R

A T I

Š K

□Example 2.5: Q2.7

Solution:

Now find the natural frequency

$$\omega_n = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{k_1 k_2 l_1^2 + k_2 k_3 l_2^2}{m(k_1 l_1^2 + k_2 l_2^2 + k_3 l_3^2)}}$$

■Example 2.5: Q2.45

Draw the free-body diagram and derive the equation of motion using Newton's second law of motion for each of the systems

shown in Fig

□Example 2.5: Q2.45

Solution F.B.D

CILIA VIII

B

R

□Example 2.5: Q2.45

Equation of motion:

The distance: $x = 4r(\theta + \theta_0)$

For mass m: mg - T = mx --- (1)

For pulley J_0 : $J_0 \ddot{\theta} = Tr - 4rk(\theta + \theta_0)(4r)$ --- (2)

According to static equilibrium: $mgr = k(4r)(4r)\theta_o \Rightarrow \theta_o = \frac{mg}{16rk}$ --- (3)

□Example 2.5: Q2.45

Equation of motion [cont]:

Substitute equations 1 and 3 into equation 1:

$$J_o \ddot{\theta} = \left(mg - mx\right)r - 16kr^2\left(\theta + \frac{mg}{16rk}\right)$$

$$J_o \ddot{\theta} - \dot{m}gr + m\ddot{x}r + 16kr^2\theta + \dot{m}gr = 0 \Rightarrow J_o \ddot{\theta} + m\ddot{x}r + 16kr^2\theta = 0$$

Use the relation $x = r\theta \Rightarrow x = r\theta$ to relate the translational motion with the rotational one:

$$(J_o + mr^2)\ddot{\theta} + (16kr^2)\theta = 0$$

